
Query Relevancy for Content

The challenge of a small data problem



Setting the stage
What we have: 

○ A consumer medical information 
website with ~3,500 articles

○ A set of ~6,000 related keyword 
search phrases

What we want:

○ Drive visitors to the website 
through paid search advertising, 
(SEM), expense $

○ Monetize the website through 
search and display ads, revenue $

○ revenue $ > expense $

2



3

In search, relevance reigns supreme



4

Step 1: Index the website content

Index the content using Elasticsearch. Easy, peasy right?

Elasticsearch gives you search but not relevance.

● how the content document fields are analyzed
● what query plans are used for the keyword phrases
● the breadth and depth of content (only ~3,500 articles)

Upshot: compare different ES analyzer/query combinations



5

Step 2: Score keyword results for relevancy

Which analyzer/query combination works best?

We can’t do it manually (3,500 articles * 6,000 keyword phrases)

We can relate keyword phrases to the content’s CMS taxonomy

We can run through all possible combinations and create a 
classification matrix (relevant/not-relevant)

Use this as a training set and calculate precision/recall for every 
keyword phrase * analyzer * query plan



Relevancy Classification Matrix 
Cost of tooth 
implant

Latest hearing ad 
technology

Broken tooth How to get rid of 
warts

...

The Use of Remote 
Controls With 
Hearing Aids

1

What to do when 
your tooth cracks? 1 1

Is it a skin tag or a 
wart? 1

Tips for treating a 
dry cough 1

... 1

6



Compare Effectiveness of Relevancy Metric 

7



Relevancy classifiers:

● Title lexical similarity (dice and jaccard)
● Content vectorization using the word2vec data model
● Cosine similarity clustering (e.g. dbscan)
● Mechanical Turk

Tools used:

● Pandas for processing the combinations as dataframes

● Elasticsearch-py to leverage elasticsearch’s tokenizing ability

● SpaCy for evaluating cosine vector distance

● SciPy for clustering

● plotly for visualization

Quantifying and Applying Relevancy 

8



9

Did we solve the problem? Well… maybe.

● Depends on how close our metric corresponds to actual search relevancy

● Maybe we haven’t thought of the best analyzer or query plan

● Flexible; we can swap out keyword phrase sets, query plans, index mappings, 
and relevancy classifications to generate new results very quickly

● Scalable; could adapt relatively easily to pyspark in the future

Future refinements include:
● softImpute (https://arxiv.org/pdf/1410.2596.pdf)
● Named Entity Recognition
● Sentiment Analysis
● Real-time feedback

https://arxiv.org/pdf/1410.2596.pdf


Thanks!

system1.com/careers


